
FEATURE SELECTION TOOLBOX

– A BRIEF MANUAL –

(for all versions, including 0.5x.x)

Petr Somol

e-mail: somol@utia.cas.cz,
ps326@cam.ac.uk

The work on the software originates at:
The Department of Pattern Recognition,

Institute of Information Theory and Automation,
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Chapter 1

Feature Selection Toolbox

Overview

This brief manual describes the Feature Selection Toolbox (FST) software package.

The FST scope is basically feature selection in statistical pattern recognition. That

means the software incorporates a number of different algorithms doing in different

ways often the same thing – selecting features based on input data and certain

probabilistic functions.

The feature selection problem is more or less a special case of a much broader

problem of subset selection. Suppose a large set of (D) items is given from which we

need to find a small (d) subset being optimal in a certain sense. In statistical subset

selection being optimal usually means being most suitable for classification or data

approximation. Although it may not be apparent, the subset selection problem may

become prohibitive because of its computational complexity. It is not possible to

rank the items in our set simply according to their individual properties and select

only the best. The item properties may depend strongly on the other items and a

subset of individually ”bad” features may prove to be rather ”good”. Because of this

uncertainty the only apparent way of searching for optimal subsets is – simply to

evaluate all the possible item combinations. But this is exactly the prohibiting point.

Testing all subsets is a combinatorial problem that requires an exponential amount

of computational time. In other words, even with relatively small sets our lifes are

too short to wait for results. Luckily a lot of more or less advanced alternative

algorithms exist to solve the problem in a reasonable way. As the feature selection

knowledge-base evolves and broadens, new algorithms and approaches appear and

the potential user may quickly become lost when choosing an appropriate way to

1



CHAPTER 1. FEATURE SELECTION TOOLBOX OVERVIEW 2

solve his subset selection problem. The FST software package aims to offering a

wide range of different feature selection algorithms, both to allow their comparison

for teaching/learning purposes as well as finding solutions of practical problems. As

the main FST domain remains the feature selection, not many other tools have been

implemented in it so far. However the system contains some additional tools like a

simple gaussian classifier or a data-conversion utility.

Figure 1.1: Feature Selection Toolbox: a) Main Window, b) Console Window, c) Re-
sult Storage Table, d) Approximation Mixture Display.

When using the FST do not expect much leadership from the system. A user

who does not know much about feature selection methods may become lost in the

jungle of parameters and/or misleading results. We therefore recommend to follow

references mentioned throughout this text to find details about particular method

properties or even the basic theoretical foundations. A good way to start is reading

either Devijver–Kittler’s book [1], Fukunaga [2] or e.g. Bishop [3] covering both the

essential theory and most of the basic feature selection methods. For information

on recent, more advanced methods see especially: Pudil et al. [16] and Somol et

al. [22] on floating search methods, Novovičová et al. [13] and Pudil et al. [15] on

mixture approximation approaches, Somol and Pudil [24] on oscillating algorithms,

Yu and Yuan [27], Somol et al. [23] and Somol et al. [25] on Branch & Bound

optimal techniques. The other references listed in the Bibliography section of this

manual relate more specifically to either the FST itself, additional aspects of its use

or additional information on particular implemented methods and their comparison.
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This manual may not cover all the tiny details of FST usability and applicability,

however it should be sufficient to enable reasonable work. To give an impression

how the FST is designed: the important part of the code is encapsulated in a rather

independent C kernel, while the user interface depends on Powersoft Optima++

C++ design environment and component libraries. Some of the kernel algorithms

could therefore be ported to other systems, while the FST as a whole is a native

Win32 application. The kernel size is about as few as 10000 lines of code, however

it implements tens, if not hundreds of methods (if we distinguish between different

modifications of equally founded algorithms).



Chapter 2

Using The Software – Basics

First thing to do with a new software is to properly install it. In case of the FST

no installation is necessary, as the software files are self-contained. Simply create a

new directory and copy all the FST files there. To start the FST application launch

the ’fst50e.exe’ executable.

Remark: Depending on a particular FST version this file may be named in a

sligtly different way, e.g. ’fst49f.exe’ or ’fst50b.exe’ etc.

To start using the FST quickly follow the examples given here. Most of the

important FST properties will then become apparent.

2.1 Parametric Feature Selection Methods Basics

Suppose our task is to select features using a given training data-set, one of available

criterion functions and a particular feature selection method. For example suppose

we want to select d = 10 features out of a total number of D = 30 on the sample

”mammogram” dataset using the simple SFS method and the Bhattacharyya dis-

tance as a criterion function. Theoretically this approach requires an assumption

of the normality of the dataset because our Bhattacharyya implementation is based

on normal distributions. For sake of simplicity do not consider this an important

question now. The sample dataset should be included as a part of the FST package

and named ’wdbc.trn’. For details about the dataset open the ’wdbc.trn’ file in any

standard text editor and read the commentary in the file header.

Having launched the application, open the Console window (see figure 1.1–b) by

clicking the Console Window checkbox on the main panel. The Console window will

gather all the textual protocols on performed operations and obtained results. Open

the data file using menu File – Open. See section 5 for more information about the

4



CHAPTER 2. USING THE SOFTWARE – BASICS 5

data format. Open file ’wdbc.trn’. Having opened the file notice the change on

the main panel – now it contains a line of text describing the opened TRN file

(picture 1.1 a). To use the SFS method with the Bhattacharyya distance we need

to estimate the normal distribution parameters using menu File – Estimation(TRN-

>DST). Distribution parameters obtained in this way may be saved to a .dst file for

future use using menu File – Save DST as . . . .

Remark: Files of the .dst type may be later opened using menu File – Open. To

access these files from the File Open dialog select Files of type: – Data structure

files (*.DST).

Now we can continue by invoking the feature selection method. From menu

Methods select (G)SFS or (G)SBS. A method dialog appears. Ensure Bhattacharyya

is selected in the Measure listbox inside the Criterion frame (see picture 4.3). En-

sure Forward and Basic choices are selected in the Method specification frame (see

picture 4.5). Write 10 into the Find single subset with size: field (picture 4.2 a).

Press the OK button to start the computation.

After the computation end the Console window will contain a protocol about

the results found. Most of the methods are accessible in a similar way from the

Methods menu, with the only exception of the Approximation methods.

2.2 Approximation Methods Basics

The approximation methods (see Novovičová et al. [13]) should be used especially

if we know nothing about the structure of the training dataset and the number of

samples is as big as possible. These methods build a special normal distribution

model that can be used both for feature selection and classification.

To illustrate these methods we will use a simple ”speech” dataset containing

15-dimensional ”yes” and ”no” pronounced word patterns. Suppose we want to

select d = 5 features out of a total number of D = 15 using the approximation

method to build a 6-component model initialised by the so-called ’Dogs & Rabbits’

initialisation strategy. Using menu File–Open open file ’speetr.trn’. From menu

Methods choose Approximation methods. A detailed method dialog appears (see

picture 4.10). Ensure Full Data is selected in the Data source frame (see 4.10 a).

SelectDogs & Rabbits in the Initialization frame (see 4.10 b). EnsureApproximation

method type is choosen in the Procedure parameters frame (see 4.10 c). Set the

percentual EM-algorithm convergence stop limit to 0.5 (d). Write 5 into the Single

Run – Find reduced subset size: field (e) and 6 into the Components field. Press
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the OK button to start the computation.

The results will be written to the Console as usual. Unlike the parametric

methods described above the approximation methods retain the resulting mixture

model in memory (as indicated on the main panel in the APX: line, see 1.1 a). The

mixture model can be saved to a file using menu File – Save APX as. . . . Files of this

type can be opened later using File – Open, where Files of type: – Approximation

mixture files (*.APX) must be selected in the File Open dialog. The obtained

mixture model can be now used for classification with the Pseudo–Bayes classifier.

Select menu Classifiers – Pseudo-Bayes. Try to use the classifier to check the

correct classification rate. Ensure Test for error rate is selected in the Classification

Purpose frame (see picture 4.13 a). Select Other File in the Test for error rate frame

(b) and then using the Open button select the testing file ’speezk.trn’. Press the

OK button to start the computation. Classification results will be output again to

the Console window.

Remark: To assess the classification performance reliably, different datasets (or

dataset parts) should be used for training and testing.



Chapter 3

Result Storage and Processing

All the feature selection or classification method results are written in form of a

textual report to the Console window. No information is stored internally concern-

ing the selected features for other use. The only exception are the approximation

methods that generate a mixture model to be used later with the Pseudo-Bayes

classifier. The textual report contains a detailed information about the course of

the finished algorithm, elapsed time, number of criterion evaluations, final criterion

value, the selected subset described by a list of feature indexes starting from 0,

processed source data file etc.

As the gathered protocols usually contain important information, the Console

allows to store its contents by pressing a small S button on its right side to a text file.

The C button serves for cleaning (erasing) all of the Console contents. A textual file

can be opened using the L button, e.g. to enable continuing previously interrupted

work session. The R button just puts a time-mark to the text. The X button closes

the Console window, however all its contents remain preserved in memory and will

appear next time the window is opened (within the current application run). The

same holds for the Results window (see below).

Single-value numerical results, i.e. resulting criterion values, computational time

and final number of criterion evaluations can be additionally stored in the Results

table (see picture 1.1 c). Such records can be used later e.g. for generating graphs.

The table window can be opened similarly as the Console – using the Results Window

switch on the main panel. However for most of cases we recommend to set-up the

whole workplace simply using menu Window – Results Desktop.

Collecting the results in the table may become interesting if we needed to call

feature selection algorithms in series, e.g. for different target subset sizes d.

7



CHAPTER 3. RESULT STORAGE AND PROCESSING 8

Figure 3.1: Invoking the Graph window from the Results window. These two Results
– Graph window pairs illustrate how to select different table rows for drawing a
different graph.

Whenever you need to compute a series of results, set the required subset size

interval in the appropriate method dialog, as seen on picture 4.2 (b). Suppose we

want to compute results for d ∈< 2, 5 >. Resulting criterion values should be stored

to a specified row of the Results table. Select the row number (use 0 for instance)

using switch (c) in a method dialog (as seen on picture 4.2). The results will be

stored as follows: the cell in row 0, column Title will contain a short method textual

identifier, columns 2 to 5 will contain criterion values of selected subsets of 2 to 5
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features. The next row will contain records about the spent computational time and

the next row will contain numbers of criterion evaluations. Note that each series of

results of a single method occupies three subsequent rows in the Results table. Keep

it in mind when selecting a row to store results of next methods.

The Results table can be saved to a file (with extension ”.res”) using button S

that can be found in the top right corner of the table window (as seen e.g. on picture

3.1). Opening an existing file is possible using the L button. Button C clears the

table. Button X closes the window. The window can be temporarily closed without

loosing the results.

3.1 Graphs

Series of results stored in the Results table may be used for drawing simple graphs.

Before invoking the Graph window the user must specify which rows of the Results

table should be used as well as their order. To select rows, mark them in the

Gr.Order column using single unique digits. First row to be represented in the graph

should be marked by 1, the second by 2 etc. The graph can be displayed not only for

rows containing numerical results (criterion values, numbers of evaluations), but also

for the time records. Time records are first converted to a single value representing

a total number of seconds. Having marked the rows, click the Graph button to open

the Graph window.

Remark: The Gr.Order column may be used not only to specify graph row

order, but also to specify graph appearance. Use expressions of type a:b:c:d instead

of single digits, where each character (a-d) must be replaced by a single digit. The

’a’ represents row order (like if the expression was just a single digit a), ’b’ specifies

graphical line type, ’c’ specifies line color and ’d’ specifies cross-point symbol type.

A legal expression is e.g. 1:1:1:1 or 2:3:4:5.

Once the Graph window has been opened, the graph still can be modified.

Rewrite numerical values assigned to axis beginnings and ends to change displayed

intervals. The graph may be exported in form of an Extended Windows Metafile

(EMF) file for further processing.

3.2 Options

The textual and/or graphical form of results can be modified by setting some of the

application-wide options accessible from menu Options:
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• compact console protocol – Textual result output is reduced to short single-line

reports.

• binary indexes in console output – Feature subsets are described as 01000101..

instead of 1,5,7,..

• randomize random seed – Relevant mostly for the oscillating search if set to

use random initialisation (see picture 4.8 f). If unchecked, the results of the

randomly initialised algorithm would be the same when repeating equally set-

up computations.

• stop on criterion evaluation errors – Normally the algorithms ignore errorous

criterion values. An errorous value may result from e.g. numerical problems

caused by weakly conditioned covariance matrices. If this happens in one

of many candidate computational branches, the algorithm simply ignores the

branch as it does not improve the current candidate subset. Set this switch

e.g. if you need to assess the behavior of the criterion function.

• SFS and SFFS output single result only – Normally both SFS and SFFS output

a series of results for all dimensionalities 0 to d after a single computation,

because due to SFS and SFFS principle these results are obtained anyway.

• Approx.Methods: hide ellipses in drawing – Normally theApproximation Graph

window (see picture 1.1 d) displays both the projection of training data sam-

ples and the current mixture in form of equipotential plane ellipses. Set this

switch to display raw data only. Read 4.7 for more details.

• Approx.Methods: draw different shapes for diff. classes – Normally the samples

and mixture ellipses of different classes are distinguished by color only. If you

need to capture the image and use it for b/w printing, set this switch. Read

4.7 for more details.



Chapter 4

Invoking the Methods

The following sections describe the behavior and parameters of feature selection

methods implemented in the FST. All of them can be invoked from the Methods

menu. With exception of the Approximation methods all the others require a normal

model (.DST) residing in memory. Typically, before invoking a feature selection

method the user would open a .TRN file and convert it to the .DST using menu File

– Estimation(TRN->DST) or directly open on exisitng .DST file.

The set of implemented feature selection methods consists both of classical and

newer or even experimental ones. To find out more about the topic and about the

informational resources read section 1.

Figure 4.1: Each method dialog shows a brief information about the currently pro-
cessed dataset.

Selecting a method from the Methods menu opens its method dialog allowing

detailed parameter settings. Any method dialog usually allows to choose from a set

of related methods as well as to set different method-dependent parameters. All the

method dialogs are designed as similarly as possible and differ from each other in

method-specific parameter controls only (the Approximation method dialog differs

more significantly from the others because the method itself is based on a different

concept).

Each dialog has an informational section in its upper part as seen on figure 4.1. A

short information about the data is displayed there to prevent any confusion about

11



CHAPTER 4. INVOKING THE METHODS 12

what is to be processed. The next dialog section common among the method dialogs

is the Criterion frame described in the following sub-section (see figure 4.3). The

last common part is in the bottom of the dialog (see figure 4.2).

Figure 4.2: Each method dialog requires setting the target subset size or an interval
of sizes for repeated method calls.

The bottom dialog part contains (besides the ordinary buttons: OK to start the

computation, Cancel to return to the main application) a mandatory parameter field

for target subset size specification. Either a single subset size d (see figure 4.2a) or

an interval of sizes (see figure 4.2b) must be selected to enable the method to run. If

the interval is selected, the method will be invoked repeatedly for all relevant target

subset sizes.

Final results are stored to the Console window by default. However, they can

be stored additionally to the Results table as described in section 3. To enable the

additional value storage check the checkbox shown on figure 4.2c and specify the

destination table row number.

Most of method dialog parameter fields offer pre-specified choices, e.g. the subset

size field is pre-set to D/2 by default. Despite that we recommend to revise carefully

all settings. The final results may be affected not only by incorrect, but also by legal

but unsuitable settings.

4.1 Criterion Functions

An essential part of method preparation is choosing a particular criterion function.

The criterion function is then used during the course of the algorithm to evaluate

candidate feature subsets. In fact, the subset selection methods aim to find a subset

yielding the highest possible criterion function value. FST offers a choice of basic cri-

terion functions being known as probabilistic distance measures. All these functions

generally yield higher values for those feature subsets (sub-spaces), for which the

class normal distributions overlap the least and therefore class separability should
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be higher. However, different criteria may lead to different feature selection results.

For details and discussion see e.g. [1, 26].

Figure 4.3: Criterion function selection frame (available on most method dialogs).

To select one of available criterion functions for use in a search method use

the listbox as on figure 4.3a. All the available criteria are defined for two-class

problems only. To overcome this limitation we allow combination of pair-wise results

if the number of classes is higher than 2. For such cases select one of pair-value

combination strategies using a listbox shown on figure 4.3c. All the feature selection

methods are built to maximise criterion values. However, if minimalisation is wanted

(e.g. to explore the ”worst” subsets) and the particular method allows it, check the

Minimize checkbox as on figure 4.3b.

If the built-in criterion functions are not sufficient, the FST offers a choice to

use external functions (see figure 4.3d). Such an external function may be e.g. a

user-constructed classifier – the result of the feature selection process would then

be probably more useful than those obtained using the standard criterion functions.

However, using external functions is not flawless and requires additional program-

ming effort. Following description is therefore meant mostly for enthusiasts.

–

To use external criteria, FST requires the user to supply an external executable

that can be invoked with special command-line parameters (see later) and returns a

simple textual file containing a single number as a result. Such an executable should

then be selected using the Select button as shown on figure 4.3d. Let us demonstrate

the parameter passing on a hypotetical executable ’crit.exe’. The FST would invoke

it as follows: ’crit -p001101...01001’. The ’-p’ option is followed by a binary list of

D values. Ones depict the currently selected candidate features, zeros depict the

unselected ones. The number of ones (feature candidates) may differ from the target

subset size d during the computation. The FST then expects to find a textual file

named ’class.res’ in the same working directory from which the ’crit.exe’ had been

invoked. The ’class.res’ should contain nothing else than the C-style floating result
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value. If the FST fails to open and read this file, the computation may not stop if

the stop on criterion errors option had not been set (see section 3.2).

This way of external criterion function calling may be considered rather unpleas-

ant, however it has been programmatically the simplest way to extend the FST

usability. Such an external function support should be considered experimental also

because of another limitation – due to certain Windows memory leaks the repeated

process invocation may cause the whole system become unstable after several thou-

sands or tens of thousands criterion evaluations.

–

Apart from particular method dialogs the criterion functions are concerned also

in the Criterion Value Calculator (see figure 4.4). The tool can be invoked using

File – Criterion Value menu to enable user-specified subset evaluation.

Figure 4.4: The Criterion Value Calculator enables computation of a criterion value
(a,b) for a specified feature subset (d). To access the calculator use menu File – Cri-
terion Value. The (c) checkbox enables entering binary form of subsets (001101011)
instead of numerical indexes (2 3 5 7 8). (The (b) option is relevant for 3- and
more-class data only.)

Moreover the calculator can be used to evaluate criterion values for full sets

of features (see figure 4.4e), or for a list of criterion values computed on single

features (i.e. on subsets of size 1, see figure 4.4f). This type of information can help

in understanding underlying data properties – occassionally certain features yield

apparently high values and therefore may be immediately considered as important.

On the other hand the list of singles can reveal numerical problems following from

badly conditioned covariance matrices – look for features yielding value −5e + 300

which marks computational failure. Remark: watch what happens if some subset

had been specified in (d) before generating the list of singles (f).
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The (g) choice is meant for experimental use only. It requires both a TRN and

a appropriate DST data to be opened in the FST. Then it generates a reduced copy

of the TRN data file, containing only a ”promising” subset of original features, i.e.

those features yielding reasonable individual criterion values (not equal to−5e+300).

This may help when working with very large sparse matrices that would normally

prevent the feature selection methods to find any result in a reasonable time.

4.2 Sub-Optimal Methods – Sequential Search

Figure 4.5: Sequential Search Parameters.

The sequential search based methods are the simplest methods implemented in the

FST. The well known Sequential Forward Selection (SFS) or Sequential Backward

Selection (SBS) can be invoked by setting the Basic option as on figure 4.5b and

either the Forward or Backward direction of search (see figure 4.5a). In general the

forward algorithm versions are faster than the backward ones. However, it is not

usually possible to predict which version would yield better results.

The option Generalised (see figure 4.5b) would set the methods to run in the

generalised mode where groups of features are tested in single steps instead of single

features as in SFS and SBS. Generalised sequential methods are known as GSFS(r)

and GSBS(r) where r is to be user-specified and means the number of features

tested in single steps. Increasing the r value for generalised methods may improve

the results sligtly at a cost of significantly increased computational time. For further

algorithm descriptions see e.g. [1].

Although the simple sequential methods are rather popular because of their

speed and simplicity, the FST offers a better choice – the Oscillating search (see

section 4.5) can be set-up to run even faster than the SFS while yielding better

results.
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4.3 Sub-Optimal Methods – Plus-l–Minus-r

Figure 4.6: Plus-l–Minus-r Search Parameters.

The Plus-l–Minus-r methods constitute a first attempt to overperform the simple

sequential methods. They require the user to specify two parameters l and r as

shown on figure 4.6a. Parameter values determine the prevailing search direction –

for l > r the algorithm runs in a forward manner, for l < r in a backward manner,

r = l is illegal. The algorithm uses a very simple backtracking to repeatedly improve

solutions found in previous steps.

As with sequential methods a Generalised version is available (see figure 4.6b).

Both standard and generalised algorithm versions are usually outperformed espe-

cially by the Floating search (see section 4.4) and are included here for comparison

purposes only. For more information on Plus-l–Minus-r see e.g. [1].

4.4 Sub-Optimal Methods – Floating Search

Figure 4.7: Volba parametr plovoucch metod.

The Floating Search constitutes a powerful and advantageous approach to subset se-

lection. As with previous methods, the Floating Search is defined either in a forward

or backward version. All the floating search algorithms keep track of the so-far best

solutions in all dimensions. They utilise a context-based backtracking that attempts

to improve any solution obtained so-far in any dimension and therefore to prepare
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better starting points for further search targeted to the required dimensionality. The

Floating Search algorithms are fast and more effective than any of the algorithms

mentioned in previous sections. After a single run they can yield solutions for all

dimensions.

To select the prevailing direction of search use switch (a) as shown on figure 4.7.

The forward algorithm version may be considered as a good choice for most of

problems.

The Floating Search principle has been further developed. Switch (b) offers a

selection of: the Classical Floating Search (recommended for most problems) as

described in Pudil et al. [16], the experimental Generalised Floating Search (for

a brief description of the ”generalisation” idea read section 4.2) or the Adaptive

Floating Search as described in Somol et al. [22].

The adaptive algorithm version focuses more thoroughly to the target dimension-

ality, therefore it may find a better solution than the classical version. However this

is usually achieved at a cost of significantly increased computational time. Moreover

the algorithm does not yield all the results for all dimensionalities in one run any

more. Currently the Oscillating search (see the following section) is a better tool

if possibly the very best solutions are required and the nature of the problem pro-

hibits a use of optimal methods. The classical floating search then remains a good

universal choice yielding very good results at a reasonable computational time cost

and a reasonable implementation complexity.

If the Adaptive floating search is selected, additional options become enabled

(c,d,e). The meaning of the Rmax and b parameters is described in detail in [22].

As usual, higher values may improve the results at a cost of slower computation.

Switch (d) enables setting the parameter values (figure 4.8c) in percentual form

(values 1 to 100) relatively to the total number of features (D). Switch (e) affects

the internal computation of single adaptive algorithm steps – when a step involves

a group of features, one of methods selected using (e) is used as a sub-procedure. If

the floating method is selected as a sub-procedure in (e), an additional set of options

becomes available (f). These settings are experimental and the default 2xrr choice

should work the best.

An important setting common to all floating search algorithm versions is the

∆ limit. The limit can be set to prevent the algorithm from potentially senseless

computations once the required result of a given dimensionality has been achieved.

For detailed description of the ∆ meaning see [16, 22]. To get the best results set

the (g) switch to No Delta/Full Search. This ensures the algorithm to finish the
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computation and to fully utilise its potential. The other choices can be set to save

computational time. The Averaging and Maximizing choices cause a dynamic ∆

prediction throughout the course of algorithm based on the longest backtracking

sequence followed so-far. Choosing the Absolute Delta option lets the user specify

a constant ∆ limit – the SFFS algorithm then will stop at dimension d + ∆, the

SBFS at d−∆.

4.5 Sub-Optimal Methods – Oscillating Search

Figure 4.8: Oscillating Search Parameters.

Oscillating Search is a highly effective and flexible search concept (see Somol et

al. [24]) and has been implemented in three concrete versions in the FST. The most

important parameter is always the oscillation cycle depth, denoted ∆. Simply said,

the algorithm updates cyclically a working set of a requested number of d features

by removing/adding one or more features at a time. The oscillation cycle depth

determines the maximum number of features allowed to be exchanged in the working

subset during one cycle. Higher ∆ values may give better results but require more

computational time. For more details on the method behavior see the cited paper.

The ∆ parameter may be specified using fields (a) as shown on figure 4.8. Legal

∆ values are positive integers. If some of the (a) fields contains 0, the particular

algorithm version will not be called, otherwise the different algorithm versions would

be called in sequence. If the fields contained e.g. 10, 5, 3, the algorithm would run

as follows: first the fastest but least powerful sequential oscillating search would

be called with ∆ = 10, then the obtained result would be taken as an entry point

for the slower floating oscillating search with ∆ = 5, then its result would be used

again as a starting point for the most promising, but slowest full oscillating search
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with ∆ = 3. However, calling a single method at a time is reasonable enough, as

mentioned in the following.

One of the biggest advantages of the oscillating search is its ability to tune

(improve) solutions obtained previously in any other way. Its computation always

starts from a pre-specified point, i.e. an initial subset of d features. Therefore

an integral part of method invokation is its initialisation. Switch (e) as shown on

figure 4.8 enables setting the initialisation type. Besides s single SFS or SFFS (full

search not restricted by a floating limit constant) it is possible to specify a concrete

initial subset by choosing the subset option and writing the feature indexes (indexed

from 0 and separated by spaces, e.g. 0 1 5 10 14 etc..) to the now available empty

textual field. The number of indexes must correspond with the specified target

subset size (see figure 4.2a).

The last available initialisation strategy is a random initialisation. The ”ran-

domness” may seem as a disadvantage, however we usually achieve the best results

using this approach. Moreover, this initialisation is advantageous also because its

speed – as opposed to the SFS, SFFS or other algorithmic initialisations it prac-

tically does not increase the overall amount of computational time. Experiments

show, that when being repeated the random initialisation may result both in an

”average” oscillating search result (comparable with other methods) or in a signif-

icantly better one. This in fact illustrates the limitations (the sub-optimality) of

the sequential search principle adopted by most of known sub-optimal methods –

the sequential methods simply follow a defined search path and may easily end up

in a local extreme. If the goal is really to find the best possible result on a high-

dimensional problem we recommend to select the random initialisation and request

its automatic repeating to increase the chances of finding something better. Do it

using the repeat until option as shown on figure 4.8f. Specify then a number of

algorithm runs (a good choice is e.g. 5). In fact the internal run counter is then

reset any time the new algorithm run resulted in overall improvement – that means

the total number of runs may be higher and the user-specified number will actually

mean the number of non-improving runs before the cycle ends.

Option (g) enables to specify a maximum allowed computational time. The

nature of the oscillating search allows this, as some working subset of d features

is always available. Stopping the algorithm after a given amount of time simply

returns the best result achieved so-far.

Options (b) can affect the internal computation behavior in case of the floating

oscillating search. These choices should be considered experimental and the default
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one (2xrr) should be used practically always. Option (c) enables setting the ∆

(figure 4.8a) values in percentual form (values 1 to 100) relatively to the total number

of features (D). Option (d) broadens the extent of the search a little bit. It forces

the algorithm to follow even less prospective search paths. For more details on all

the parameters see the cited paper.

Remark: According to our experience two algorithm configurations are partic-

ularly powerful: 1) The sequential oscillating search with small ∆ values and (op-

tionally repeated) random initialisation is one of the fastest methods of all and is

well suitable e.g. for problems of very high dimensionalities where practically all

the other methods (including SFS) fail to find solutions in a reasonable time. More-

over, starting from different initial points with repeated random initialisation gives

good chance to find solutions, that could not be found using standard sequential

methods due to their principal definitions. The randomised sequential oscillating

search also may succeed in cases where due to numerical problems the others fail

to find any solution. 2) The full oscillating search gives usually very good results

even with very small ∆. Although its speed decreases significantly with increasing

∆, our experiments show that even with ∆ = 2 or ∆ = 3 the algorithm usually out-

performs all the other algorithms including the SFFS. Again, random (optionally

repeated) initialisation results in better algorithm speed and better chance to find

a real optimum.

4.6 Optimal Methods

Figure 4.9: Optimal Search Parameters.

All the implemented optimal search methods are grouped in this dialog. The sim-

plest choice would be the Exhaustive search (see figure 4.9a). This algorithm simply

tests all the possible feature subset configurations. Therefore it becomes extremely
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slow with increasing dimensionality. It should be used in cases where: the overall

dimensionality (D) is very small, or target subset size d is close to 1 or D, or an

external non-monotonic criterion function is used. One of the Branch & Bound

algorithms should be used whenever possible to obtain the result faster.

In general all the optimal methods are significantly slower than the sub-optimal

ones (that is the main reason to define sub-optimal methods). The speed difference

between the slowest and fastest Branch & Bound algorithm may be described by fac-

tor 10 to 100, but even the fastest Branch & Bound methods become unusable with

increasing dimensionality of the problem, especially if d is close to D/2. According

to our experience the practical limitation lies somewhere around d = 25, D = 50 on

current PC machines. This may differ a little bit depending on dataset and criterion

properties.

Choices b) to f) on figure 4.9 then offer different Branch & Bound algorithms.

These algorithms can be used with monotonic criterion functions only, however this

property is fulfilled by all the standard functions available in the FST:

• Choice b) – Basic B.a.B.(No Sort) is the simplest Branch & Bound algorithm

defined for feature selection purposes in 1978 by Narendra and Fukunaga [2].

It requires no additional parameters. It should be used for comparison and

demonstration purposes only. Remark: This algoithm is denoted as ’B.a.B.

(No Sort)’ in older FST versions.

• Choice c) – Improved B.a.B.(Full Sort) is the most widely accepted Branch

& Bound version featuring an additional internal heuristics for accelerating

search-tree construction. It requires no additional parameters. This algorithm

can be considered a reference algorithm when assessing the speed of more ad-

vanced prediction-based algorithms (described below). Remark: This algoithm

is denoted as ’B.a.B. (Full sort)’ in older FST versions.

• Choice d) – B.a.B. Partial Prediction invokes the Branch and Bound with

Partial Prediction as described in Somol et al.[25]. We consider this algorithm

the best choice for general use, as its performance is notably higher than that

of the previous algorithms. As this is a prediction-mechanism based algorithm,

additional parameters may be set for it as described in the following. However,

the standard setting is supposed to be the best and the others serve mostly

for experimental pusposes only. Remark: This algoithm is denoted as ’B.a.B.

(Partial 2)’ in older FST versions.
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• Choice e) – Fast B.a.B. invokes the Fast Branch & Bound as described in Somol

et al. [23]. This is the most powerful algorithm known to us and implemented

so-far. It uses a prediction mechanism to predict the search tree topology and

to omit many non-prospective computations. Additional parameters must be

set as described in the following. Remark: This algoithm is denoted as ’Fast

B.a.B.’ or ’Restrictive B.a.B.’ in older FST versions.

• Choice f) and the 3 next ones serve for experimental purposes only.

Remark: all the Branch & Bound algorithms are implemented to construct a

minimum solution tree as described in Yu and Yuan [27].

The predicive algorithms (choices d) and e)) may be affected by setting different

additional parameters. Different prediction mechanism types are implemented here,

mostly for experimental purposes. The best prediction mechanism for vast majority

of problems is the avg – averaging prediction mechanism as shown on figure 4.9g.

It collects the information about average criterion value changes caused by feature

removals during the search tree construction process.

Option i) enables to affect the speed of the averaging prediction mechanism

learning process. The fatigue can be set to values greater or equal to 1. Close-to-1

values cause the learning process to prefer recent values. That means the prediction

information would evolve quickly dependend on particular search tree context. High

values or even deselecting the i) option causes the prediction mechanism to stabilise

with time. This is supposed to be more advantageous in general, however it may

not be the case everytime.

The Fast B.a.B. algorithm requires two additional parameters that may affect

both its speed and its robustness. The Sensitivity (denoted optimism constant γ

in the paper) value affect the way the algorithm utilises the prediction mechanism

to restrict search tree construction. It can be set to real values close to 1, while

1 is the default and most ’independent’ value. Reasonable values should lie within

approximately (0.2, 2.0). The Reliability (denoted δ in the paper) value can be set

to slow-down the prediction mechanism start. This parameter sets the number of

learning steps required before the prediction mechanism is allowed to start. Legal

values are therefore integers greater or equal to 1. We recommend to set this value

approximately to 5. See the paper [23] for more information on the parameters

meaning.
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4.7 Approximation Methods

Figure 4.10: Approximation Method Parameters.

The Approximation methods (for details see [15, 13]) are principally different from

the others and therefore need a special setting dialog (figure 4.10). Frame (a) can be

used to restrict the approximation training process to certain data parts (intervals)

only. Using this restriction can be advantageous if only a single data set is available

– its first half may then be used for training and later the second half for testing.

Switches (b) gathered inside the Initialization frame allow selection of the mix-

ture parameters initialisation strategy. Switch (c) allows to select either the so-called

Approximation method (better for data-representation, usable with more than 2

classes, see [15]), or the so-called Divergencemethod (better for class–discrimination,

restricted for use with 2 classes only, see [13]).

Both of the methods repeat computational cycles consisting of mixture parame-

ters recalculation and estimation of the new mixture Likelihood value (data fitting

”quality”). The algorithms are known to converge, i.e. the Likelihood differences

(current - last value) tend to be smaller with time. To prevent the computation from
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infinite run we restrict it by setting a lowest allowed Likelihood percentual difference

(parameter d), that actually characterizes a moment when no further improvement

of the mixture model can be reasonably expected.

Figure 4.11: 2D Data projection with mixture component equipotential planes
drawn as ellipses.

As usual in FST the target subset size is to be specified. In addition to that,

a number of mixture model components is to be specified as well (see figure 4.10).

The (f) choice serves for experimental purposes – it allows repeating the algorithm

for different feature subset sizes and numbers of components followed by a classi-

fication process to find the best subset/components configuration yielding highest

classification rates.

Figure 4.12: Selecting the dimensions for 2D approximation data display.

Mixture model evolution can be observed visually during the course of the al-

gorithm in form of a 2D data-space projection with components displayed using

correllation ellipses. The projection is displayed in the Approximation Graph win-

dow (see figures 1.1c and 4.11) that must be opened before the approximation start.

In addition, the Grpahic Output option must be checked (see figure 4.10g).
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The Approximation Graph window contents are then redrawn after each approxi-

mation computation step. The computation remains suspended until the user clicks

’Go on’ on the small dialog popping up after each computational step (see figure 4.12)

and allowing different 2D subspace projections to be selected and drawn.

–

Both approximation mixture based methods generate a mixture model that can

be later used for classification. As a part of the process a feature subset is selected.

The mixture model is actually build on the selected subspace, while the remaining

dimensions are used in a form of ”background” information.

Figure 4.13: Pseudo-Bayes Classifier Settings.

The obtained mixture can be used with the so-called pseudo-Bayes classifier

(accessible from menu Classifiers – Pseudo-Bayes) either for classification of un-

classified/unknown data stored as a single-class .TRN file (see figure 4.13a) or for

classification rate estimation (figure 4.13b). In case of classification rate estimation

either the current .TRN file (switch b) on figure 4.13) or a different one can be used.

Set of choices c) allows to restrict the testing process to a specified part of the test

data.

If classifying unknown data, select the data file using the Open button in the

Classify unknown data frame as shown on figure 4.13d. Use the Report to file

checkbox to specify a log-file, that would contain the classification information.
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Accepted Data Formats

Because of our primary goal – to make a software usable for different purposes in

different scientifical applications – we had to choose a universal and simple way of

data input. The FST therefore processes data in a form of standard text files with

numerical values stored using the C language convention. To let the application

recognize the meaning of the data, all files must contain a simple textual header,

that can be usually created without bigger effort. The header stores all the essential

information about the data, like the number of classes, features, samples, etc. An

example and description of required header contents follows.

Suitably formated data files may then be modified in different ways using the

File Manipulation Dialog tool (see sect.5.1). This tool enables data file cutting or

joining according to different user-specified settings (e.g. which features to preserve,

which data intervals to delete, etc.).

The FST currently supports three basic file types:

1. Basic data files containing data samples, i.e. vectors of feature values de-

scribing a certain number of samples from a set of classes. They are depicted

by a .TRN file extension. The ordering of numerical values is assumed to

be according to (most important first): class (set of pattern vectors), sample

(pattern vector), feature (pattern vector member).

This file type is the most universal one, because it may be used (in its original

or processed form) with all FST tools. It is possible to build an approximation

model upon it (see .APX description in the following) or to estimate gaussian

mixture parameters from it (see .DST description in the following). In this

sense the basic data file can be used for feature selection, data approximation,

classification rate estimation or even for classification of unclassified data.

26
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It should be noted, that opening the file does not cause any memory allocation

as such. During the opening phase the FST only reads the data header and

records the position of the first data record within the file. The actual data

are read later, possibly repeatedly during the feature selection process. This

enables to use large training sets on systems with moderate physical memory.

The appropriate header for basic data files should look like in the sample

below. All keywords must be placed at the beginning of lines. The first

line must contain the #datafile keyword. The #title line is optional. The

#features and #classes lines are mandatory. The #features keyword must

be followed by a value depicting the number of features, separated by any

whitespace character(s). Remark: whitespace characters are used as standard

delimiters to separate numbers and/or keywords. The #classes keyword must

be followed by a value depicting the number of classes, whitespace, and a series

of class sizes separated by commas. The ”;” character at the beginning of a

line depicts a remark – following text will be ignored. Empty lines are simply

ignored. No keywords, comments or special characters may occure after the

#data keyword, which depicts the actual start of the dataset. Remark: the

FST simply remembers the position of the first character after the #data

keyword and reads the file from that position whenever needed without any

additional format checking. It is your responsibility to ensure that the data

part of the file contains nothing else than the proper number of numerical

values separated by white space(s).

#datafile

#title Wisconsin Diagnostic Breast Center

; Features are computed from a digitized image of a fine needle;

; description ...

#features 30

#classes 2 357,212

#data

13.54

14.36

87.46

566.3

.
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.

2. Gaussian distribution parameter files – depicted by a .DST file extension.

These files are usually estimated from the .TRN file. This can be done using

menu File – Estimation(TRN->DST). These files contain gaussian distribu-

tion mean vectors and covariance matrices. This form of input data is required

for use with all the feature selection methods (both sub-optimal and optimal)

accessible from theMethods menu, where standard probabilistic distance mea-

sures (like Bhattacharyya etc.) are used to evaluate feature subsets. The file

header is structured similarly to the header described above. Also the general

restrictions and rules are similar. In this case the first line must contain the

keyword #datastructure only, the #classes keyword is followed by a single

value only and the data section of the file is divided to three sub-sections,

beginning with #apriori, #mean and #cov. The meaning of this division is

apparent.

#datastructure

#title Estimated from ’C:\data\wdbc.trn’

; Wed Jul 7 18:54:45 1999

#classes 2

#features 30

#apriori

0.6274165202108963

0.3725834797891037

#mean

12.14652380952381

17.91476190476189

78.07540616246497

.

.

#cov

3.170221722043872

-0.2642603945960405
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20.95534960406635

237.7691602059926

.

.

3. Approximation mixture model files – depicted by a .APX file extension. These

files are usually generated from the .TRN file. This can be done using one of the

approximation methods accessible through menu Methods – Approximation

Methods. For description of these methods read sect. 4.7. These files can

be used for classification purposes with the Pseudo-Bayes classifier accessible

through menu Classifiers – Pseudo-Bayes.

#approximation data

#title Generated from C:\data\wdbc.trn

; selected features: 1 3 4 7 8 14 21 23 24 28

; by ’approximation’ method with convergence limit 0.5 %

; initialization: Dogs & Rabbits

; performed on: Tue Sep 25 16:18:51 2001

#classes 2

#components 8

#features 30 1,0,1,1,0,0,1,1,0,0,0,0,0,1,0,0...

#apriori

0.6274165202108963

0.3725834797891037

#weights

0.1757116985087308

0.002801120448179272

0.06112943177559165

.

.

#parameters

9.638537006707566 0.7655738368590722
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17.78022997031067 3.939819206179633

61.36174928636417 4.973341312296493

284.5855396949107 45.23822608619243

0.09591644237278267 0.0145545454326604

.

.

5.1 Data File Conversion

The FST offers a conversion filter to enable certain .TRN data file transformations.

To use the filter open the Data File Manipulation dialog from menu File – Manip-

ulation(TRN) (see picture 5.1). The filter allows among others: deleting sample

intervals, deleting certain feature values from all the samples, reducing number of

classes, but also joining two files to increase number of samples per class, or to add

classes, or to add features etc.

Figure 5.1: Data File Manipulation dialog.

Let us demonstrate the filter functionality on two examples. First suppose we

need to modify a 15-dimensional, 2-class speech data file ’speetr.trn’ so that the

resulting file contained samples 50 to 120 from the second class only and where
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features 4 and 7 were deleted from all the samples. Press the Open 1 button (a) to

open file ’speetr.trn’. Press the Open T button (b) to select a name for the target

file to be created.

Table Source 1 now contains a list of classes. Each row contains two values where

the first one depicts the initial relative index of the first class sample to be included

in the target file (initially 0) and the second depicts the number of samples to be

copied (initially all the available ones). Rewrite the number of Class 1 samples in

the Count column (d) to 0. For the second class change the Begin (c) value to 50

and the number of Class 2 samples in the Count column (d) to 70 (we want to copy

samples between the 50th and 120th one). Table Features 1 (g) can be used to

mark features for deletion; rewrite values in columns 4 and 7 to 0. The actual file

conversion can be now started by pressing the Start button. In case of successfull

conversion you can try to open the new .trn file in some external text editor to see

the commentary in the new file header.

The second example will be on joining two .TRN files. Press the Open 1 button

(a) to open the 2-class file ’speetr.trn’, and Open 2 button to open the second 2-

class file ’speezk.trn’. The files contain compatible information, therefore their join

makes sense. Press the Open T button (b) to select a name for the target file to be

created.

If the two files have equal number of features, the filter can be started imme-

diately using the Start button. In that case the target file will contain 4 classes

copied simply from the source files. However, suppose we would like to join the

pairs of classes to get two new bigger ones. Mark the inter-file class relations using

the AppendTo (f) column as follows: write 1 to the Class 1, AppendTo cell of the

Source 2 table and 2 to the Class 2, AppendTo cell. These values serve as pointers

to classes in the first datafile, to which the second datafile class data should be

appended. Pressing the Start button now would result in generating a new 2-class

file as specified.

Note that two-file joins can be done in a number of different ways, e.g. some of

the AppendTo (f) indexes can be omitted. Another possibility is to append second

file features to the features in the first file. If the same number of non-empty classes

is specified in both source tables and these classes are linked using the AppendTo

(f) indexes as well so that each pair of linked classes has equal number of samples,

then it is possible to check the Append features (h) checkbox to request a target

dataset in which each sample would contain all the feature values from both of the

source files.
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As could be seen, the Data File Manipulation dialog provides a rather powerful

set of conversion filters that can be combined to produce a new file in a single

conversion run.

–

The FST offers also a file filter allowing data file enlargement. Enlarging the

training set may prove beneficial for the approximation mixture based methods,

especially with training sets of unsufficient sizes.

Figure 5.2: Data File Enlargement Filter Dialog.

To invoke the filter use menu File – Enlarge and Save TRN as.... This will

open the File Enlargement dialog as shown on figure 5.2. The filter works with the

current TRN file, therefore the user must have opened the desired source TRN file

before invoking the filter dialog. Two enlargement methods are available. Both of

them enlarge the file by creating n copies, where n is the user-parameter specified

in field 5.2c. Therefore for n = 3 the resulting file size would be 4x the original one,

because the original data samples are copied as well.

The constant multiplication based method (see figure 5.2a) uses the user-specified

parameter (let us denote it α) as follows: it multiplies each sample vector by a

random scalar generated randomly on interval < 1 − 0.01 ∗ α, 1 + 0.01 ∗ α >. To

prevent grouping of similar samples the new file will contain sequences of samples of

the following type: o1, o2, o3, . . . , c1,1, c2,1, c3,1, . . . , c1,2, c2,2, c3,2, . . . , c1,n, c2,n, c3,n, . . .,

i.e. the original sample o1 will be used for creating c1,i, i = 1, . . . n etc.

The linear combination based method (see figure 5.2b) uses its user-specified

parameter (let us denote it β) to generate n ∗ class size new samples for each class

by means of linear combination. Each new sample is generated as follows: first a

number (let us denote it Γ) of source samples (let us denote them yi, i = 1, . . . ,Γ)

is determined randomly on interval < 2, β >. Γ original samples are then selected

randomly from the current class. Following that, Γ random non-zero weights (let

us denote them ∆i, i = 1, . . . ,Γ) are generated to fulfill
∑
Γ

i=1∆i = 1. One new
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data sample x = (x1, x2, . . . , xD) is then generated so that xj =
∑
Γ

i=1 yi ∗ ∆i, j =

1, . . . , D. The whole procedure is repeated separately for each new sample with

newly regenerated Γ, y’s, ∆’s etc.

Both of the methods as described yield new samples linearly dependent on the

original ones. To prevent linear dependencies and to add a slight noise to the data

check the (d) checkbox. Method (a) will then use the α parameter to generate new

random multipliers for each single value separately. Method (b) will make use of

the same α parameter as well, to additionally multiply each single value obtained

in a way described above.

Of course none of these enlarging procedures can add any relevant information

that had not been already contained in the original dataset. However it may af-

fect the mixture model training process, which is usually strongly unreliable if the

number of samples in each class is less than 10x–100x the dimensionality D. Exact

recommendation regarding the sufficient training data size can be hardly stated,

as it depends on the particular problem properties. In general the more training

samples are available the better and more reliable results can be expected.
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Implementation Remarks

The biggest effort has been put on quality of the kernel functions. It is not possible

to describe all significant code properties, however some of them could be noted.

Generally all the feature selection algorithms are computationally demanding and

spend usually a lot of computational time. FST code is therefore optimised to avoid

unnecessary slow-downs whenever possible, e.g. while accessing n-dimensional mem-

ory structures etc. A particularly important part of the code is the implementation

of criterion functions, because the algorithms usually spend most of their time evalu-

ating criterion values on otherwise quickly generated candidate subsets. Despite the

intention to achieve highest code speed possible we did not omit basic error-recovery

mechanisms.

Many subset search algorithms are theoretically defined in two versions: ”bottom-

up” and ”top-down”. The first version starts with an empty feature subset; features

are then added to that subset to achieve the required cardinality. In the second

case the algorithm starts with a set of all features that is reduced in subsequent

algorithm stages. Many algorithms then allow combining of both ”bottom-up” and

”top-down” steps to achieve better search efficiency. Moreover, these algorithm

steps often involve testing groups of features instead of single ones only. To enable

implementation of all kinds of often complicated algorithms (as e.g. the oscillating

search, combining effectively its basic approach with different other methods) we

needed to find a flexible and fast way of processing the features. Our implementa-

tion of each method is therefore built around a working vector of D feature state

identifiers. Each identifier value depicts, whether the given feature is currently se-

lected or not. The identifier values can depict even other feature states depending

on currently processed algorithm sub-steps, e.g. whether the feature is to be fixed

and included in the final result or whether it is selected temporarily only. We use

34
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different positive values to depict selected features, while other values depict features

outside the current candidate subset. Mentioning the existence of such a technolog-

ical ”detail” as the identifier vector is has a good reason: a simple redefinition of

identifier value meanings allowes us to change instantly the direction of search as

well as other algorithm properties. In this way we have been able to define a vir-

tually unique code implementing both the ”bottom-up” and ”top-down” search for

every algorithm known to exist in two search direction versions. It should be noted

that this approach does not cause any measurable algorithm slow-down. Moreover,

the code becomes significantly simpler and lucid in this way, what results in shorter

debugging times as well.

As an experimental platform the FST has been serving for testing and develop-

ment of new methods. A lot of work can be done in the future. We are considering to

implement a set of parallelised procedures, porting the whole system to Visual C++

to enable creating a better user interface, or extending the applicability of the whole

package. We plan to use the FST as a base for building a complex, user-oriented

system with decision support based on a simple expert system.
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Known Problems

The software is presented ”as-is”. Most of the kernel code is supposed reliable.

However, the same cannot be said about the user interface. Here you can find a

list of known problems. Some of them will be corrected in next software versions.

Unfortunately a lot of problems follow from weak Powersoft Optima++ library im-

plementation, what was not apparent at the time we started writing the software

in 1996. These problems cannot be compensated on our side now, mostly because

Sybase decided to stop any further Optima development some time ago. It should

be also noted, that the Optima++ compiler produces a native Windows 95 code,

which should run without problems on every current Windows version, however we

cannot guarantee that e.g. the latest Windows XP or so would not cause unex-

pected problems. We are considering to port the whole software to Visual C++

environment, however, this is a long-term goal.

Kernel problems:

• From implemented criterion functions, only the Bhattacharyya should be con-

sidered fully reliable because it has been checked thoroughly and its results

have been verified using different implementations on different systems. Also

the Divergence caused no problems so far. The other criterion functions occa-

sionally suffered numerical problems causing isolated non-monotonical behav-

ior. Because of speed requirements no internal numerical overflow checking is

implemented, therefore be prepared to observe problematic results with certain

problematic datasets.

• File import filters assume line lenghts not exceeding ca. 1000 characters (in-

cluding whitespace). If your source data are organised e.g. in tables where

36



CHAPTER 7. KNOWN PROBLEMS 37

each row is stored as one textual line exceeding the limit, the file can be opened

seemingly correctly but final results may not be correct. Older FST versions

also occasionally generated (using the File Manipulation dialog) files causing

Import Error messages – in that case the problem followed from too long com-

ment lines in file headers. Such lines can be simply removed manually to make

the file usable.

• The system is meant to be used for solving problems of reasonable dimension-

alities. That means we have used it successfully with datasets having several

hundreds of dimensions. If you attempt to process data of tens of thousands

of dimensions, expect problems. Memory allocation errors may appear, some

methods will refuse to work, or the gaussian mixture parameter estimation

will fail. Generally the approximation methods should be usable even with

these extreme dimensionalities. Moreover, the lists of features are indexed in-

ternally by int variables, thus the system cannot work with more than about

32000 features. With extreme dimensionalities the generated DST and APX

files may contain lines too long to be readable by the FST.

• Some seemingly legal algorithm settings may result in error messages – this

does not affect the usability of the system, because these errors usually indi-

cate that a particular algorithm should not be used in that case – i.e. using

advanced methods for selecting single feature only etc.

• Approximation methods may cause the application crash during the final stage

of computation. The problem has been corrected and should not appear any

more, however we cannot guarantee it without further testing.

• Be aware of weakly-conditioned covariance matrices resulting from e.g. loose

datasets containing lots of 0 values. Although the algorithms yield reasonably

looking results, it may be a nonsense. However, this is more or less a theoretical

problem.

• Feature indexes should start from 0 everywhere. However a forgotten case of

indexes starting from 1 may be discovered. We are currently checking this.

This should not happen with any of the standard methods.

• Minor problems regarding more or less the programming culture – without

straight influence on the FST functionality.
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User interface problems:

• Serious application crashes should be rare. However, it is a good idea to

restart the application occasionally, especially before long-lasting computa-

tions. The user interface components taken from Optima++ may refuse to

process messages after some longer application run, what results in a behavior

where everything looks OK, algorithms compute, but no new results appear

in neither the Results or Console windows.

• The Console window may occasionally stop to accept new input having filled

about 33% of its memory capacity. This means algorithms would continue

running but no new information would appear in the Console. In that case

restart the application.

• The Results window may occasionally stop to accept new input as well. Restart

the application.

• The Approximation Graph window is not properly implemented, therefore it

looses its contents when overlapped by other windows.

• The File – Manipulation dialog may occasionally refuse to complete the con-

version process properly. Ensure no table field (inside the tables nor in the

feature lists) remained selected for editation (marked by a bevelled field bor-

der). If it does not help, try to restart the application.

• Some method dialog setting combinations may still be found to be inconsistent

with actual method requirements, what would result in error messages. In such

cases, the method algorithm is supposed to be ”the one to make the decision”

– simply do not use such setting combination any more.

• Graph to EMF export filter produces Extended Windows Metafiles that may

not be openable correctly with certain graphical applications. This is a Pow-

ersoft library problem that cannot be resolved on our side.

• Keyboard-based control may not be correctly functional everywhere, therefore

the software may be hard to use without a mouse (or other pointing device)

connected.

• Certain text messages and inscriptions contain traces of ”czenglish”, i.e. im-

properly translated czech words or sentences. That holds for this manual as

well.
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Comments And

Acknowledgements

The work on the FST started as a part of my PhD thesis. About 60% of the kernel

code had been programmed at that time to verify new methods proposed in the

thesis and to compare them with traditional ones. Later, the code had been found

useful also for other purposes what resulted in further work. The kernel has been

extended and improved throughout the years. The windows user interface has been

added later at the time when Powersoft Optima++ constituted the only Delphi-like

tool for fast C++ user interface programming. Consequences of this decision are

discussed in the previous chapter.

All the code including all its ups and downs has been programmed by me so

far. Such a single-programmer work may be considered advantageous because of

consistency of all the method implementations – the system as a whole thus may be

considered well suitable for method comparison purposes. On the other hand there

was not enough time to build the user interface to as good state as we would like to.

Also the system as a whole could not be tested thoroughly and different problems

may become apparent any time.

Although the programming work has been done by a single person, the ever evolv-

ing concept, choice of algorithms, overall architecture and user interface properties

have been thoroughly consulted within a group of consultants. The main consul-

tant and project co-leader is prof. Pavel Pudil, Head of the Department of Pattern

Recognition at the Institute of Information Theory and Automation, Prague. Any

enquires regarding the FST should therefore be directed either to the author’s ad-

dress (see the front page) or even better to prof. Pudil, pudil@utia.cas.cz or

pudil@fm.vse.cz.
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