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Abstract—We introduce a new standalone widely applicable
software library for feature selection (also known as attribute
or variable selection), capable of reducing problem dimension-
ality to maximize the accuracy of data models, performance of
automatic decision rules as well as to reduce data acquisition
cost. The library can be exploited by users in research as
well as in industry. Less experienced users can experiment
with different provided methods and their application to real-
life problems, experts can implement their own criteria or
search schemes taking advantage of the toolbox framework.
In this paper we first provide a concise survey of a variety
of existing feature selection approaches. Then we focus on a
selected group of methods of good general performance as well
as on tools surpassing the limits of existing libraries. We build a
feature selection framework around them and design an object-
based generic software library. We describe the key design
points and properties of the library. The library is published
at http://fst.utia.cz.

Keywords-subset search; feature selection; attribute selec-
tion; variable selection; optimization; software library; ma-
chine learning; classification; pattern recognition;

I. INTRODUCTION

Feature Selection (FS), also known as attribute selection
or variable selection, can be considered one of the key stages
in building automatic decision rules in machine learning,
data modeling as well as in data mining [1]–[4]. FS reduces
the dimensionality of input data by identifying such subset
of original features, that captures the most (ideally all)
information stored in the original data while consisting of
possibly least redundant features.

By reducing noise and irrelevant parts of data, FS not
only saves data acquisition cost and reduces data processing
time, it also often improves accuracy of the constructed
model or the recognition accuracy of the devised decision
rule. This is possible due to the learning process being
less affected by noise as well as due to reduced effects of
the curse of dimensionality (term coined by R. Bellman),
especially if the number of samples/records in training data
is low with respect to data dimensionality. (With increasing
dimensionality and constant number of data points the data
space gets sparse and the possible clusters or boundaries
between classes get less well defined.)

FS is common in computer supported decision making
and data mining in various fields; in medical diagnostics to
identify important symptoms, in economics and finance to
identify credibility factors or to evaluate trends, in industry
for defect detection, in document processing to identify
terms that distinguish document categories, in security to
identify important face image features, etc.

In this paper we describe our general purpose C++ fea-
ture selection library, Feature Selection Toolbox 3 (FST3),
published at http://fst.utia.cz. In Sections II to III we give an
overview of the existing feature selection methodology. In
Section IV we introduce our implementation and explain its
architecture. In Section V we discuss library usage and give
code example. In concluding Sections VI to VII we discuss
alternative solutions and future development. Note: diagrams
in Figures 1, 3, 5 and 6 follow UML syntax. C++ class
names in italic denote abstract classes.

Figure 1. FST3 library architecture – simplified global overview. The call
to search() returns a feature subset with respective criterion value

II. FEATURE SELECTION – PROBLEM FORMULATION

Given a set Y of features (attributes, variables) of size
D = |Y|, let us denote Xd the set of all possible subsets of
size d, where d represents the desired number of features.
Let J(X) be a criterion function that evaluates feature subset
X ∈ Xd. Without any loss of generality, let us consider a
higher value of J to indicate a better feature subset. Then
the feature selection problem can be formulated as follows:
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Find the subset X̃d for which

J(X̃d) = max
X∈Xd

J(X). (1)

Assuming that a suitable criterion function has been chosen
to evaluate the effectiveness of feature subsets, feature
selection is reduced to a search problem that detects an
optimal feature subset based on the selected measure. Note
that this is a potentionally expensive combinatorial problem
as the number of candidate subsets is

�
D
d

�
.

Figure 2. Feature subset selection methods can be generally viewed
as black box procedures generating a sequence of candidate subsets with
respective criterion values, among which intermediate solutions are chosen

Note that the choice of d may be a complex issue depend-
ing on problem characteristics, unless d can be optimized as
part of the search process (see Sect. III-C).

III. FEATURE SELECTION – REVIEW

The first step in solving the FS problem involves choosing
appropriate FS tools based on the knowledge (or lack
of therein) of available training data properties. The key
decision to be made involves the choice of criterion (see
Sect. III-A) and search algorithm (see Sect. III-B). The cor-
rect choice of FS tools for the given task is a complex issue
[1], [4]–[7] while no single approach can be recommended
as generally best. The search process itself can be viewed as
an interative – potentially time consuming – operation (see
Fig. 2). The search is stopped according to chosen stopping
criterion; it can be defined in terms of achieved completness
of search, criterion convergence threshold, subset size limit,
time, etc. The common final step after the resulting feature
subset has been obtained is validation on independent data
(data not used in the course of search). In the following we
give an overview over the existing variety of FS tools. The
library design to be presented should reflect this variety and
enable inclusion of any FS tool upon need (see Sect. IV).

A. Feature Subset Evaluation Criteria
In the course of a FS process individual features and/or

feature subsets need to be evaluated using a criterion func-
tion. An optimal subset is always relative to a particular
criterion. The ultimate FS criterion – probability of error
– is difficult to evaluate directly [1]. It is therefore usually

substituted by one of available alternatives either from the
family of dependent or independent FS criteria.

Dependent FS criteria are based on estimating the error
rate of a chosen machine learning tool, usually a classifier or
regressor. Dependent criteria will thus favour subsets tightly
coupled with a particular tool. The solutions obtained using
dependent criteria may not be good when used in a different
context, although for the given tool they are often favorable.

Independent FS criteria attempt to assess the merit of
features from the data [1], [8]. Independent criteria can be
roughly divided into the following categories [4]:

Distance measures are also known as separability, diver-
gence or discrimination measures, because their purpose is
to maximize the distance (and thus separability) between
classes. Interclass distance can be simply evaluated using lin-
ear or nonlinear metrics (e.g., Minkowski, Euclidean, Cheby-
chev, etc.). An assumption of data normality is often ac-
cepted to enable use of probabilistic distance measures (e.g.,
Mahalanobis, Bhattacharyya, Divergence, Patrick-Fischer),
which are otherwise difficult to enumerate [1]. Many proba-
bilistic distance measures (e.g., Mahalanobis, Bhattacharyya,
Divergence, Patrick-Fischer) can be analytically simplified
in the two-class case when the classes have parametric
distributions [1].

Margin-based measures maximize the margin that sepa-
rates classes [9], [10] or the distance between a hypothesis
and the closest hypothesis that assigns alternative label to
the given instance [11]–[15].

Information measures determine the information gain
from a feature, or a mutual information between the fea-
ture and a class label [16], or class separability based
on entropy [1]. The maximal-relevance-minimal-redundancy
(mRMR) criterion has been shown to be equivalent to
maximal statistical dependency of the target class on the data
distribution, but more efficient [17]. Entropy also belongs to
this category of indicators of class separability [1].

Dependence measures, also known as correlation mea-
sures, or similarity measures, quantify the ability to predict
the value of one variable from the value of another [18].
The correlation coefficient can be used to find the correlation
between a feature and a class [19], [20].

Consistency measures minimize the number of features
that separate classes as consistently as the full feature
set [21], [22]. An inconsistency is defined as two instances
having the same feature values but different class labels.

The relation of various measures to the probability of error
in terms of bounds has been widely studied [1], [23]–[28],
but remains an important open problem.

It is common to distinguish FS methods according to
the type of employed criteria [5]. Wrappers optimize the
dependent criteria [5], [29]. Filters optimize the independent
criteria [1]. Filters tend to generalize better and search
faster than wrappers, but wrappers produce more accurate
results for particular machine learning tools. Hybrid methods
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attempt to combine the best of other approaches [4], [30],
[31]. Embedded methods incorporate FS into modelling
[32]–[34] and can be viewed as more effective but less
general form of wrappers.

B. Feature Subset Search Algorithms

Provided a suitable FS criterion is chosen, the FS problem
can be viewed as a combinatorial subset search problem (a
form of pure binary programming problem in optimization
terms). Due to the number of possible feature combinations
the time complexity becomes an issue with increasing prob-
lem dimensionality.

With the exception of the exhaustive search, all optimal
methods are based on Branch & Bound [35], [36] and can be
used only with monotonic criteria [1] (the case of, e.g., many
distance measures). All optimal methods are applicable to
lower-dimensional problems only (roughly D < 50) due
to their exponential complexity. FS in higher-dimensional
problems and in problems with non-monotonous criteria is
enabled by the polynomially complex sub-optimal methods.
Remark: Optimality with respect to chosen FS criterion does
not necessarily imply better performance of the final system.
Due to various negative problem-dependent effects (curse-
of-dimensionality, insufficient sample-size-to-dimensionality
ratio, sampling errors, estimation errors, etc.) it may well
happen that sub-optimal solutions over-perform the optimal
ones in terms of generalization [6]. Sub-optimally selected
subsets may perform better if the learning process is unsta-
ble [7] or tends to over-fit [6] (see Sect. III-E).

Deterministic heuristic sub-optimal methods implement
various forms of hill climbing to produce satisfactory results
in polynomial time. Unlike sequential selection [1], float-
ing search does not suffer from the nesting problem [37]
and finds good solutions for each subset size [37], [38].
Oscillating search and dynamic oscillating search can im-
prove existing solutions [39], [40]. Stochastic (randomized)
methods like random subspace [41], evolutionary algorithms
[42], memetic algorithms [43] or swarm algorithms like ant
colony [44] may be better suited to over-come local extrema,
yet may take longer to converge. The Relief algorithm [10]
iteratively estimates feature weights according to their ability
to discriminate between neighboring patterns. Deterministic
search can be notably improved by randomization as in
simulated annealing [45], tabu search [46], randomized
oscillating search [39] or in combined methods [47].

The Best Individual Feature (BIF), or individual feature
ranking approach is the fastest and simplest approach to
FS, often the only applicable in problems of very high
dimensionality. BIF is standard in text categorization [48],
[49], genetics [50], [51], etc. BIF may be preferable not
only because of speed but also to overcome FS stability and
over-fitting problems (see Sect. III-E).

C. The Question of Feature Subset Size
Note that many standard FS criteria are monotonous with

respect to subset size (e.g., probabilistic distance measures
[1]) and thus make direct optimization of d impossible as the
full feature set would always be yielded. Accordingly, most
of the traditional FS methods are defined as d-parametrized,
i.e., they require the user to decide what cardinality should
the resulting feature subset have. In contrary, d-optimizing
FS methods optimize both the feature subset size and subset
contents at once, provided a non-monotonous criterion is
used. Dependent criteria are particularly suitable for this
purpose (see Sect. IV-C2 and IV-D5).

D. Feature Acquisition Cost
Standard FS criteria assess features only based on their

impact on classification performance. In many tasks, how-
ever, the cost of measurement acquisition should be reflected
(cheap measurements may be preferable to very expensive
ones that improve overall system accuracy only negligibly).
This can be done by including a penalization factor in the FS
criterion [52]. Measurement cost can be reflected by means
of a complementary criterion that is applied in the course
of search only when the primary criterion permits choice
among (almost) equal candidate subsets [53]. Considering
cost of feature groups instead of single features may improve
FS results [54].

E. Over-fitting and instability issues
In analogy to classifier over-training the FS process may

over-select [6]. Over-selected features may lead to poor
generalization, i.e., degraded performance of the devised
machine learning system on previously unknown data. Un-
stable FS process may lead to similar problems [7], [55],
[56]. Preventing these issues requires careful handling of
the trade-off between simpler methods that over-fit less
and more thorough optimizers capable of revealing more
useful information about feature dependences. Especially
with low-sample-size or high-dimensional data sets it may
be advisable to resort to trivial search tools like BIF. It is also
advisable to consider non-trivial estimators (cross-validation,
leave-one-out, etc.) when estimating classification accuracy
(see Sect. IV-B). However, unless stability or over-fitting
problems occur, the more advanced search methods that
better reflect relations among features are likely to produce
better results.

IV. IMPLEMENTING FEATURE SELECTION LIBRARY

FS method implementations can be found in many soft-
ware libraries. Often they play only support role, or are
intended for use within specific limited domain, or the im-
plementation runs only in specific environment like Matlab
(see Sect. VI). FST3 differs by its primary focus on the
feature selection problem. As such it implements not only
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techniques available elsewhere, but also many specialized
non-standard tools, including:

• (Parallelized) highly effective subset search methods to
tackle computational complexity,

• Wrappers, filters and hybrid methods, deterministic
and/or randomized,

• Anti-overfitting measures: criteria ensembles, result
regularization, stability and similarity evaluation, etc.,

• Templated highly effective and customizable C++ code.
In view of the vastness and diversity of known approaches

to FS (cf. Sect. III) the FS library necessarily must be
restricted in number of the implemented tools. Although
the battery if initially implemented tools is to be sufficient
enough to cover a possibly extensive variety of important FS
scenarios, it is crucial for the library design to be general
enough to enable extension in any of its aspects. In the
following we discuss the architecture, currently implemented
set of tools as well as usage scenarios of FST3 (see also
http://fst.utia.cz/?fst3_arch).

A. FST3 Library Architecture
For simplified global overview of FST3 library architec-

ture see Fig. 1. Key entities involved in FS process have their
counterparts in respective FST3 classes Search, Subset,
Criterion, Classifier and Model. All data access is
abstracted through a specialization of Data_Accessor (see
Sect. IV-B and Fig. 3 for details). Concrete search algorithms
(specializations of Search, see Sect. III-B and Fig. 6
for details) yield a Subset object, maximizing a chosen
criterion (specialization of Criterion, see Sect. IV-C and
Fig. 5 for details). Note that gray boxes in Figs. 3, 5 and
6 suggest points of straightforward library extension. For
details and examples of library usage see Sect. V.

Figure 3. FST3 library architecture – simplified view of data access model

B. FST3 Data Access Layer
Access to data is realized through a Data_Accessor

object. Data_Accessor provides standardized access to
data for all library tools that need it, including Criterion
and Classifier objects. Two data accessor specializations

are provided, both caching the complete data in memory;
Data_Accessor_Mem_ARFF reads data from ARFF files
(standard Weka [57] machine library format), Data_Acces-
sor_Mem_TRN reads data from a file in TRN format (see
Fig. 8). Accessing different data sources (e.g., a database
server) requires deriving a new class from Data_Accessor
(see Fig. 3).

Two data access modifying mechanisms are implemented
through dedicated objects: data pre-processing and multi-
level data splitting to training/testing data parts (see Fig. 3).
Data_Scaler objects enable data preprocessing, primar-

ily aimed at normalization of data values. Concrete Da-
ta_Scaler is called during Data_Accessor initialization.
Default normalizers include Data_Scaler_to01 to scale
all values to [0, 1], Data_Scaler_white to normalize mean
values and variances, and Data_Scaler_void to by-pass
the mechanism.

Figure 4. FST3 data access layer – nested train/test splitting

Data_Splitter objects enable sophisticated access to
various parts of data at various stages of the FS process. The
mechanism enables to realize various estimation schemes,
selecting data parts for training/validation/testing, as well
as FS stability evaluation [7], [55]. Splitters may provide
multiple loops of data access (in k-fold cross-validation there
would be k loops). The splitting mechanism allows nesting
to arbitrary depth (see Fig. 4). Typically two nesting levels
suffice; the “outer” spliting level is good for separating test
data for final verification of FS results, the “inner” splitting
level is good for estimating classifier accuracy in each step
of wrapper-based FS selection process. Different Data_-
Splitter objects can be used in different nesting levels.
Just one nesting level is set for data access at a time to hide
the nesting mechanism from higher-level library tools (where
simple access to training and testing data is expected) Each
Data_Splitter object generates two lists of Data_In-

tervals (intervals indexing data samples), one to select data
samples for training, second to select data samples for test-
ing. Technically there is no restriction on possible interval
overlapping (i.e., data sample re-use), nor on completeness
of data coverage. See Fig. 4 for illustration. Default FST3
splitter objects implement cross-validation (class Data_-

Splitter_CV), hold-out (class Data_Splitter_Hold-
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Figure 5. FST3 library architecture – subset evaluation criteria, data modeling and classifier classes

Out), leave-one-out (class Data_Splitter_L1Out), re-
substitution (class Data_Splitter_Resub), random sam-
pling (class Data_Splitter_RandomRandom).
Remark: splitting can be defined separately for each

class or globally. Separate splitting leads to stratified data
sampling (proportional with respect to class sizes). Global
splitting enables, e.g., leave-one-out access where in one
loop only one sample in one class is accessed for testing
while all others in all other classes are accessed for training.

C. FST3 Feature Subset Evaluation Framework
See Figure 5 for overview of FST3 subset evaluation

class hierarchy. Abstract class Criterion_Filter covers
the implementations of independent criteria, class Crite-

rion_Wrapper adapts Classifier objects to serve as de-
pendent criteria. Several independent criteria and classifiers
require first to estimate Model parameters from data.
1) Data Models: Class Model_Normal implements the

multivariate gaussian (normal) model. Note that criteria
based on normal model may yield misleading results for
non-normally distributed data, especially in multi-modal
case. Class Model_Multinomial implements the multino-
mial model, suitable esp. for text categorization [49]. Mo-
del_Normal is used in Criterion_Normal-based criteria
and Classifier_Normal_Bayes. Model_Multinomial

is used in Criterion_Multinomial-based criteria and
Criterion_Multinomial_NaiveBayes.
2) Classifiers and Dependent Criteria: Class Classifi-

er_Normal_Bayes implements Bayes classifier assuming
normally distributed data, class Classifier_kNN imple-
ments k-Nearest Neighbor classifier, class Classifier_-

LIBSVM provides interface to externally linked Support
Vector Machine library [58], class Classifier_Multino-
mial_NaiveBayes implements Naïve-like Bayes classifier
assuming multinomially distributed data. Class Criteri-

on_Wrapper adapts any object of type Classifier to
serve as FS criterion, see Fig. 5.
3) Independent Criteria: Class Criterion_Normal_-

Bhattacharyya implements Bhattacharyya distance, Cri-
terion_Normal_GMahalanobis implements generalized
Mahalanobis distance, Criterion_Normal_Divergence

implements the Divergence, all assuming normality of data.
Criterion_Multinomial_Bhattacharyya implements
multinomial Bhattacharyy distance, Criterion_Multino-
mial_MI implements individual Mutual Information.

D. FST3 Feature Subset Search Framework
See Figure 6 for overview of FST3 search algorithms’

class hierarchy. Class Search_BIF implements feature
ranking (cf. III-B) – the fastest and most trivial FS method
that ignores possible inter-feature dependencies but runs
in linear time. The more powerful sub-optimal sequential
search methods generally follow the hill-climbing idea. To
avoid local extremes the more advanced methods extend the
hill-climbing idea by introducing various forms of back-
tracking and/or randomization. Sequential search methods
do not guarantee optimality with respect to chosen FS
criterion, yet they offer very good optimization-performance
vs. (polynomial) time-complexity ratio, making them the
favourable choice in FST3 (see Sect. IV-D1 to IV-D5).
Optimal Branch & Bound-type methods (exponential time
complexity) are to be included in next FST3 update.
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Figure 6. FST3 library architecture – search algorithm classes. Note that
any sequential search algorithm can be parallelized, hybridized or turned
to an ensemble selector by Sequential_Step specialization.

1) Sequential Search: Most of the known sequential FS
algorithms (to be defined in the following) share the same
“core mechanism” of adding and removing features to/from
a current subset, that can be described as follows:
Definition 1: For a given current feature set Xd, let f+

be the feature such that

f+ = arg max
f∈Y\Xd

J+(Xd, f) ,

where J+(Xd, f) denotes the criterion function used to
evaluate the subset obtained by adding f (f ∈ Y \ Xd)
to Xd. Then we shall say that ADD(Xd) is an operation of
adding feature f+ to the current set Xd to obtain set Xd+1

if

ADD(Xd) ≡ Xd ∪ {f+} = Xd+1, Xd,Xd+1 ⊂ Y.

Definition 2: For a given current feature set Xd, let f−

be the feature such that

f− = arg max
f∈Xd

J−(Xd, f) ,

where J−(Xd, f) denotes the criterion function used to
evaluate the subset obtained by removing f (f ∈ Xd) from
Xd. Then we shall say that REM(Xd) is an operation of
removing feature f− from the current set Xd to obtain set
Xd−1 if

REM(Xd) ≡ Xd \ {f−} = Xd−1, Xd,Xd−1 ⊂ Y.

In order to simplify the notation for a repeated application
of FS operations we introduce the following useful notation

Xd+2 = ADD(Xd+1) = ADD(ADD(Xd)) = ADD2(Xd) ,

Xd−2 = REM(REM(Xd)) = REM2(Xd) ,

and more generally

Xd+δ = ADDδ(Xd), Xd−δ = REM δ(Xd) .

Abstract class Sequential_Step forms a basis for concrete
ADD and REM implementations, see Fig. 6. Note that in
standard sequential FS methods, J+(·) and J−(·) stand for

J+(Xd, f) = J(Xd∪{f}), J−(Xd, f) = J(Xd\{f}) , (2)

where J(·) is the FS criterion function to be evaluated on
the subspace defined by the tested feature subset. Class Se-
quential_Step_Straight implements ADD and REM
as defined in (2), see Fig. 6.
2) Basic Sequential Selection: builds up a subset of the

required number d of features incrementally starting with
the empty set (bottom-up or forward approach), or starting
with the complete set of features and iteratively removing
the most redundant features until d features retain (top-down
or backward approach) [1], [59].

Sequential Forward Selection (SFS) yields subsets of 1 to d
features:

Xd = ADDd(∅).
Sequential Backward Selection (SBS) yields subsets of d to
D features:

Xd = REM |Y|−d(Y).

Unlike BIF, the basic sequential selection takes into account
feature dependencies. However, due to lack of backtracking
it suffers from the so-called nesting of feature subsets [1]. To
better avoid local extremes in the search space more complex
(but slower) methods have been defined. Class Search_SFS
implements both SFS and SBS, see Fig. 6.
3) Sequential Floating Search: adds a ’self-controlled

backtracking’ to enable correction of decisions made in
previous algorithm phases [37]. For each subset size the
so-far best solution is remembered. The Sequential For-
ward Floating Selection (SFFS) procedure repeats after each
forward step conditional backward steps as long as they
improve solutions for the lower subset size. The Sequential
Backward Floating Search (SBFS) principle is analogous.

Sequential Forward Floating Selection (SFFS) yields subsets
of all sizes, unless restricted by Δ ∈ [0, D − d] to obtain
subsets of 1 to d features only:

1) Start with X0 = ∅, k = 0.
2) Xk+1 = ADD(Xk), k = k + 1.
3) Repeat Xk−1 = REM(Xk), k = k − 1 as long as it

improves solutions already known for the lower k.
4) If k < d+Δ go to 2.

Floating search algorithms have shown good performance
in great variety of tasks and are considered to be among
the most universally applicable tools in FS [38], [60]. Class
Search_SFFS implements both SFFS and SBFS, see Fig. 6.
4) Oscillating Search: (OS) is based on repeated modi-

fication of the current subset Xd of d features [39]. In each
step a number of features is replaced by better ones until no
replacement leads to improvement. The number of replaced
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Figure 7. Graphs demonstrate the course of d-parametrized sub-optimal sequential subset search algorithms: a) Sequential Forward Selection, b) Sequential
Forward Floating Selection, c) Oscillating Search and d-optimizing algorithm: d) Dynamic Oscillating Search

features in one step can increase from 1 up to the user-
specified limit Δ, which enables trading accuracy for speed.

Oscillating Search (OS) yields a subset of d features, with
search-extent-restricting parameter Δ ≥ 1:

1) Start with any initial set Xd of d features. Let δ = 1.
2) Let X↓

d = ADDδ(REMδ(Xd)).
3) If X↓

d better than Xd, let Xd = X↓
d, let δ = 1 and go to 2.

4) Let X↑
d = REMδ(ADDδ(Xd)).

5) If X↑
d better than Xd, let Xd = X↑

d, let δ = 1 and go to 2.
6) If δ < Δ let δ = δ + 1 and go to 2.

OS starts the search from any initial set of d features. This
search scheme enables a) using OS as standalone FS method,
b) tuning FS results obtained in another way, c) tackling
very-high-dimensional problems (where bottom-up or top-
down procedures would fail to reach d in reasonable time
[61]), d) repeated starts from various random initial subsets
to better avoid local extremes, e) time-controlled operation
– OS intermediate solutions tend to improve faster in earlier
search stages, pre-mature stopping is thus likely to give a
reasonably good solution. Fig. 7 illustrates the differences
in the course of search among OS and other sequential
methods. Class Search_OS implements OS, see Fig. 6.
5) Dynamic Oscillating Search: (DOS) [40] is the d-

optimizing counterpart to the d-parametrized OS as it allows
change in intermediate solution cardinality in the course of
search [40]. See Fig. 7 for illustration of the difference.

Dynamic Oscillating Search (DOS) yields a subset of opti-
mized size k, with search-extent-restricting parameter Δ ≥ 1:

1) Start with Xk=3 = ADD3(∅), or alternatively with any
initial set Xk ⊂ Y. Let δ = 1.

2) Compute ADDδ(REMδ(Xk)); if any intermediate sub-
set Xi, i ∈ [k−δ, k] is found better than Xk, let it become
the new Xk with k = i, let δ = 1 and restart step 2.

3) Compute REM δ(ADDδ(Xk)); if any intermediate sub-
set Xj , j ∈ [k, k + δ] is found better than Xk, let it
become the new Xk with k = j, let δ = 1 and go to 2.

4) If δ < Δ let δ = δ + 1 and go to 2.

DOS shares the key advantages of OS, see Sect. IV-D4.
Class Search_DOS implements DOS, see Fig. 6.

E. Tackling Excessive Search Complexity
In many tasks the trade-off between search complexity

and accuracy of results is to be taken into account. For cases
when the complexity of search appears prohibitive while the
task to be solved does not permit simplification imposed by
BIF style of FS (i.e., complex dependencies among features
are to be expected and too important to ignore), the FST3
library enables several possible workarounds.
1) Exploiting the Oscillating principle: Especially in

very-high dimensional tasks where d is neither close to 0 nei-
ther to D it may be feasible to apply OS (cf. Sect. IV-D4) or
DOS (cf. Sect IV-D5) in the least computationally demand-
ing setting (Δ = 1), initialized randomly or by means of
feature ranking (BIF). Unlike other sequential algorithms the
oscillating algorithms by-pass the possibly time-prohibitive
(or numerically unstable) process of reaching d in top-
down or bottom-up manner. This approach has been shown
feasible in text categorization [61].
2) Parallelization: As alternative to standard sequen-

tial evaluation of feature subset candidates FST3 enables
threaded candidate subset evaluation. All FST3 sequential
search methods can be easily parallelized by using Sequen-

tial_Step_Straight_Threaded instead of Sequenti-

al_Step_Straight evaluator object. The actual search
speed gain depends on particular problem setting. In small-
sample, low-dimensional settings, or when criterion evalua-
tion is very fast, the actual gain can remain negligible or even
negative due to thread management overhead. However, in
computationally more complex cases (high dimensionality,
complex criterion functions used, large sample size, etc.) the
gain can become substantial. With many higher-dimensional
problems the FST3 threading capability becomes key in
making the feature selection task tractable. Note that max-
imum permitted number of threads to run in parallel is to
be user-specified in Sequential_Step_Straight_Thre-
aded depending on hardware capabilities.
3) Hybridization: In case the chosen FS criterion proves

too slow to permit complex search schemes where large
numbers of candidate subsets are to be evaluated, it may
be feasible to introduce another – fast but less accurate –
FS criterion to pre-filter some of the candidate subsets in
each search step. Only the more promising candidates are
eventually evaluated by the primary slow FS criterion.
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Figure 8. Default FST3 data file format consists of textual header (; marks
comments) followed by C-style sequence of textual numerical values

This hybrid approach to FS has been shown capable
of yielding results comparable or only marginally different
from standard single-criterion FS [4], [31]. The common
option is to combine filters and wrappers (see Sec. III-A).
For sake of simplicity let JF (.) denote the faster but for
the given problem possibly less appropriate filter criterion,
JW (.) denote the slower but more appropriate wrapper cri-
terion. The hybridization coefficient, defining the proportion
of feature subset evaluations to be accomplished by wrapper
means, is denoted by λ ∈ [0, 1]. In the following �·� denotes
value rounding. To implement hybridization we redefine
operations ADD and REM (see Sect. IV-D1):
Definition 3: For a given current feature set Xd and given

λ ∈ [0, 1], let Z+ be the set of candidate features

Z+ = {fi : fi ∈ Y \Xd; i = 1, . . . ,max{1, �λ · |Y \Xd|�}}
such that

∀f, g ∈ Y\Xd, f ∈ Z+, g /∈ Z+ J+
F (Xd, f) ≥ J+

F (Xd, g) ,

where J+
F (Xd, f) denotes the pre-filtering criterion function

used to evaluate the subset obtained by adding f (f ∈ Y \
Xd) to Xd. Let f+ be the feature such that

f+ = arg max
f∈Z+

J+
W (Xd, f) ,

where J+
W (Xd, f) denotes the main criterion function used

to evaluate the subset obtained by adding f (f ∈ Z+) to
Xd. Then we shall say that ADDH(Xd) is an operation of
adding feature f+ to the current set Xd to obtain Xd+1 if

ADDH(Xd) ≡ Xd ∪ {f+} = Xd+1, Xd,Xd+1 ⊂ Y.

Definition of REMH is analogous. Any sequential search
algorithm in FST3 can be hybridized by means of the Se-

quential_Step_Hybrid specialization of class Sequen-
tial_Step, see Fig. 6 and Sect. IV-D1 and V.

F. Improving Generalization in Overfitting-prone Scenarios
If the FS process produces poor results due to over-

fitting as described in Sect. III-E, FST3 provides several
workarounds that may help to find better alternative solu-
tions without necessity to resort to weaker search methods
like BIF. (In BIF possible dependencies among features are
completely ignored what has been shown less harming than
dependencies being wrongly estimated [7], [62]–[64].)

1) Criteria Ensembles: Substituting Sequential_-

Step_Ensemble for Sequential_Step_Straight in se-
quential search algorithms enables multiple criterion func-
tions to be used when evaluating candidate feature subsets.
In one sequential search step then each of the various
employed criteria builds a list of feature candidates, ordered
descending according to criterion value. Feature candidate
positions in all lists are then joined (averaged) and the can-
didate with best average position (i.e., most universal pref-
erence) is selected for addition/removal to/from the current
working subset. Multiple criteria voting produces results that
are more stable [65] and less affected by possibly misleading
single criterion properties (analogy to overfitting).
2) Result Regularization and Result Equivalence Identi-

fication: FST3 enables tracking of all/part-of intermediate
solutions that the search algorithms evaluate in the course
of search. Objects derived from Result_Tracker can be
linked to any search algorithm in order to enable eventual
selection of alternative solutions to the single one provided
by standard search. Result_Tracker_Dupless can reveal
alternative feature subsets yielding the same criterion value.
Result_Tracker_Regularizer makes it possible to se-
lect alternative solutions based on any secondary criterion.
This option enables selecting alternative solutions that may
be less likely to over-fit [6], [53].
3) Stability and Similarity Evaluation: The result track-

ing mechanism can be alternatively utilized to evaluate FS
process stability as well as to compare output of various
FS processes (see Sect. III-E). Result_Tracker_Stabi-
lity_Evaluator collects selected subsets from various FS
runs to eventually evaluate various stability and similarity
measures [56].

G. Feature Acquisition Cost Minimization

FST3 enables feature acquisition cost minimization taking
use of Result_Tracker_Regularizer in combination
with Criterion_Sum_Of_Weights secondary criterion.
The trade-off between the maximum achieved value of the
primary criterion and maximal possible decrease of the
sum of pre-specified feature weights is controlled by user-
specified threshold. See [53] for details.

V. FST3 LIBRARY CODE USAGE

To select features for a given task the user needs to choose
one of the implemented search methods and the appropriate
criterion, both with respect to the particular problem. For
recommendation see [1], [4], [5], [66]. From the library
usage perspective this means setting up and linking objects
of these parent types: Data_Accessor as interface to data,
Data_Scaler to enable data pre-processing or normaliza-
tion, one or more Data_Splitters to specify how and what
part of data to use for what purpose (learning, testing, cross-
validation, etc.), Subset to store FS results, Criterion to
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enable evaluation of candidate feature subsets in the course
of search, Search to actually run the FS process.

Criterion can be instantiated as one of the model-based
independent functions (based on Criterion_Normal or
Criterion_Multinomial) or as instance of one of avail-
able Classifiers wrapped by Criterion_Wrapper ob-
ject (see Figs. 1 and 5). If the Search object represents
a sequential search algorithm, it needs an instance of the
supporting Sequential_Step object (see Fig. 9).

In Fig. 9 we give an example of code usage. It selects
features using SFFS algorithm and 3-NN wrapper classifi-
cation accuracy as FS criterion. Classification accuracy (i.e,
FS wrapper criterion value) is estimated on the first 50%
of data samples by means of 3-fold cross-validation. The
final classification performance on the selected subspace is
eventually validated on the second 50% of data. SFFS is
called in d-optimizing setting, invoked by parameter 0 in
search(0,...), which is otherwise used to specify the
required subset size. For more examples see http://fst.utia.
cz/?fst3_usage.

A. FST3 Library Applications
FST3 has served as research and application platform in

wide range of domains. It has been successfully applied in
credit scoring [67], medical diagnostics, economics (evalua-
tion of business success factors), text categorization [61] and
various specialized recognition tasks. Its search algorithms
have been applied beyond the boundaries of feature selection
for texture synthesis in automotive industry [68].

Provided the training data is available in or convertible
to ARFF (Weka) or TRN format or a problem-specific data
accessor object can be implemented, the library enables solv-
ing various FS problem scenarios. Several of the included
tools provide functionality beyond the limits of concurrent
libraries. Oscillating Search (cf. Sect. IV-D4) enables non-
trivial FS in very-high-dimensional problems, multinomial
Bhattacharyya distance (cf. Sect. IV-C3 and IV-E1) is an
unconventional FS criterion practical in document process-
ing, Dynamic Oscillating Search is highly efficient in feature
subset size optimizing scenarios (cf. Sect. IV-D5), etc.

VI. ALTERNATIVE LIBRARIES

Other implementations of FS methods in Matlab can be
found at http://www.prtools.org, at http://cmp.felk.cvut.cz/
cmp/software/stprtool, in C/C++ at http://pcp.sourceforge.
net, at http://www.sgi.com/tech/mlc, at http://sites.google.
com/site/tooldiag, or at http://www.cs.waikato.ac.nz/ml/
weka. For a comprehensive list of alternative FS related
projects as well as other resources including benchmarking
data see http://fst.utia.cz/?relres.

VII. SUMMARY AND FUTURE WORK

We provide an advanced C++ library for feature (at-
tribute, variable) selection in machine learning. The library,

available free for non-commercial use at http://fst.utia.cz,
collects a number of data modeling, subset evaluation and
subset search tools. The particular advantage over concurrent
solutions is its clear FS-focused architecture, allowing for
implementing various non-trivial search scenarios, useful
to tackle the computational complexity vs. result accuracy
trade-off. The library forms a basis for further development,
allowing extension in each of its main functional areas (co-
operation welcome). The next releases will include optimal
search methods, in particular those based on the Branch &
Bound idea.
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